Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500318

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Subject(s)
Electroacupuncture , Parkinson Disease , Sirtuin 3 , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Sirtuin 3/genetics , Mitophagy/genetics , Protein Kinases/genetics , Beclin-1 , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , RNA, Messenger
2.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367666

ABSTRACT

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Subject(s)
Myocytes, Cardiac , Shal Potassium Channels , Ubiquitin-Protein Ligases , Animals , Humans , Rabbits , Action Potentials/physiology , Genome-Wide Association Study , Myocytes, Cardiac/metabolism , Potassium/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , HEK293 Cells
3.
Curr Med Sci ; 44(1): 93-101, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38393524

ABSTRACT

OBJECTIVE: Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS: A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS: The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION: Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.


Subject(s)
Cardiomyopathies , Enterovirus Infections , Protein Kinases , Selenium , Ubiquitin-Protein Ligases , Animals , Rats , Autophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Rats, Wistar , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Mod Pathol ; 37(4): 100438, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278485

ABSTRACT

We recently described novel dermal tumors with melanocytic differentiation and morphologic and biological similarities to cutaneous clear cell sarcoma, including CRTC1::TRIM11 cutaneous tumor, and clear cell tumors with melanocytic differentiation and either ACTIN::MITF or MITF::CREM. Here, we describe a series of 3 patients presenting with tumors reminiscent of CRTC1::TRIM11 cutaneous tumor, found to demonstrate a novel MED15::ATF1 fusion. All 3 patients were children (5-16 years old). Primary excision of case 1 showed a circumscribed wedge-shaped silhouette with peripheral intercalation into collagen fibers and scattered lymphoid aggregates. All 3 tumors abutted the epidermis; one showed a junctional component. Tumors were highly cellular and comprised of monomorphic, oval-to-round epithelioid cells arranged in vague nests and short fascicles in variably fibrotic stroma. Mitotic rate was high (hotspot 6-12/mm2), without atypical mitoses. Necrosis was focally present in case 3. All cases showed strong, diffuse nuclear staining for SOX10 and MITF (2/2) but showed variable expression for S100 protein (1/3) and other melanocytic markers-Melan-A (focal in 2/3), HMB45 (focal in 1/3), and Pan-Melanoma (patchy in 1/1). Whole-exome RNA sequencing demonstrated a MED15::ATF1 fusion without any other notable alterations. Cases 1 and 2 were completely excised without recurrence (12 months). Case 3 developed a grossly apparent regional lymph node spread shortly after primary biopsy. The patient was treated with wide excision, radiation, cervical lymph node dissection (4/46 with >75% lymph node replacement), and neoadjuvant and adjuvant nivolumab (alive without disease at cycle 11). This series is presented to aid in future diagnosis of this novel dermal tumor with melanocytic differentiation and emphasize the potential for aggressive biologic behavior, which should be considered in patient management planning.


Subject(s)
Melanoma , Sarcoma, Clear Cell , Skin Neoplasms , Adolescent , Child , Child, Preschool , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mediator Complex , Melanoma/diagnosis , Sarcoma, Clear Cell/diagnosis , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/pathology , Skin Neoplasms/pathology , Transcription Factors/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
5.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166714

ABSTRACT

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Subject(s)
Arabidopsis , Solanum tuberosum , Ubiquitin-Protein Ligases/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Drought Resistance , Phylogeny , Droughts , Ubiquitins/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
6.
Gene ; 897: 148081, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38101713

ABSTRACT

Azadiradione is a small bioactive limonoid found in the seed of Azadirachta Indica, an Indian medicinal plant commonly known as Neem. Recently, it has been shown to ameliorate the disease pathology in fly and mouse model of Huntington's disease by restoring impaired proteostasis. Here we report that the azadiradione could be involved in modulating the synaptic function through increased expression of Ube3a, a dual function protein having ubiquitin ligase and co-activator functions and associated with Angelman syndrome and autism. Treatment of azadiradione to HT22 hippocampal cell line and in adult mice induced the expression of Ube3a as well as two important synaptic function and plasticity regulating proteins, parvalbumin and brain-derived neurotropic factor (BDNF). Interestingly, another synaptic plasticity modulating protein Arc (activity-regulated cytoskeletal associated protein) was down-regulated by azadiradione. Partial knockdown of Ube3a in HT22 cell abrogated azadiradione induced expression of parvalbumin and BDNF. Ube3a-maternal deficient mice also exhibited significantly decreased expression of parvalbumin and BDNF in their brain and treatment of azadiradione in these animals did not rescue the altered expression of either parvalbumin or BDNF. These results indicate that azadiradione-induced expression of parvalbumin and BDNF in the brain is mediated through Ube3a and suggest that azadiradione could be implicated in restoring synaptic dysfunction in many neuropsychiatric/neurodegenerative disorders.


Subject(s)
Angelman Syndrome , Limonins , Mice , Animals , Limonins/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Parvalbumins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Brain/metabolism , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Angelman Syndrome/pathology , Disease Models, Animal
7.
Autoimmunity ; 56(1): 2281235, 2023 12.
Article in English | MEDLINE | ID: mdl-37994046

ABSTRACT

Aggravated endoplasmic reticulum stress (ERS) and apoptosis in podocytes play an important role in lupus nephritis (LN) progression, but its mechanism is still unclear. Herein, the role of SMURF1 in regulating podocytes apoptosis and ERS during LN progression were investigated. MRL/lpr mice was used as LN model in vivo. HE staining was performed to analyze histopathological changes. Mouse podocytes (MPC5 cells) were treated with serum IgG from LN patients (LN-IgG) to construct LN model in vitro. CCK8 assay was adopted to determine the viability. Cell apoptosis was measured using flow cytometry and TUNEL staining. The interactions between SMURF1, YY1 and cGAS were analyzed using ChIP and/or dual-luciferase reporter gene and/or Co-IP assays. YY1 ubiquitination was analyzed by ubiquitination analysis. Our results found that SMURF1, cGAS and STING mRNA levels were markedly increased in serum samples of LN patients, while YY1 was downregulated. YY1 upregulation reduced LN-IgG-induced ERS and apoptosis in podocytes. Moreover, SMURF1 upregulation reduced YY1 protein stability and expression by ubiquitinating YY1 in podocytes. Rescue studies revealed that YY1 knockdown abrogated the inhibition of SMURF1 downregulation on LN-IgG-induced ERS and apoptosis in podocytes. It was also turned out that YY1 alleviated podocytes injury in LN by transcriptional inhibition cGAS/STING/IFN-1 signal axis. Finally, SMURF1 knockdown inhibited LN progression in vivo. In short, SMURF1 upregulation activated the cGAS/STING/IFN-1 signal axis by regulating YY1 ubiquitination to facilitate apoptosis in podocytes during LN progression.


Subject(s)
Lupus Nephritis , Humans , Animals , Mice , Lupus Nephritis/pathology , Mice, Inbred MRL lpr , Ubiquitination , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Immunoglobulin G/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
J Cell Biol ; 222(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37831441

ABSTRACT

The dependency of cancer cells on iron increases their susceptibility to ferroptosis, thus providing new opportunities for patients with treatment-resistant tumors. However, we show that lipid peroxidation, a hallmark of ferroptosis, was found in various areas of patient samples, indicating the potential resistance of ferroptosis. Using whole deubiquitinases (DUBs) sgRNA screening, we found that loss of ZRANB1 confers cancer cell resistance to ferroptosis. Intriguingly, functional studies revealed that ZRANB1 ubiquitinates and represses SLC7A11 expression as an E3 ubiquitin ligase and that ZRANB1 inhibits glutathione (GSH) synthesis through SLC7A11 degradation, leading to elevated lipid peroxidation and ferroptosis. Deletion of the region (residues 463-584) abolishes the E3 activity of ZRANB1. Moreover, we show that ZRANB1 has lower expression in tumors, which is positively correlated with lipid peroxidation. Collectively, our results demonstrate the role of ZRANB1 in ferroptosis resistance and unveil mechanisms involving modulation of E3 ligase activity through an unconventional catalytic domain.


Subject(s)
Endopeptidases , Neoplasms , Ubiquitin-Protein Ligases , Humans , Amino Acid Transport System y+/genetics , Deubiquitinating Enzymes , Glutathione , Lipid Peroxidation , RNA, Guide, CRISPR-Cas Systems , Ubiquitin-Protein Ligases/genetics , Ferroptosis , Endopeptidases/genetics
9.
Zhen Ci Yan Jiu ; 48(9): 898-905, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37730260

ABSTRACT

OBJECTIVE: To observe the effect of acupotomy on mitophagy mediated by PINK1/Parkin pathway in cartilage of rabbits with knee osteoarthritis (KOA), so as to explore its mechanism in inhibiting cartilage damage. METHODS: Twenty-one New Zealand rabbits were randomly divided into normal, model, and acupotomy groups, with 7 rabbits in each group. The KOA rabbit model was established by using the Videman method. Rabbits in the acupotomy group received regular acupotomy treatment around the knee joint nodules or tendons once a week for 3 consecutive weeks. HE staining and transmission electron microscopy were used to observe the morphological and ultrastructural changes in knee joint cartilage of rabbits. Flow cytometry was used to measure the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) average fluorescence intensity in chondrocytes. Immunofluorescence was performed to detect the fluorescence intensity of LC3B, PINK1 and Parkin in cartilage tissue. Western blot was conducted to measure the protein expression levels of p62, LC3Ⅱ/Ⅰ, PINK1, and Parkin in cartilage tissue. RESULTS: Compared to the normal group, the model group showed fissures and tissue fibrosis on the surface of rabbit knee joint cartilages, loose distribution of chondrocytes, decreased autophagosomes, and abnormal mitochondrial morphology. The fluorescence intensity of LC3B, PINK1 and Parkin, the expression levels of LC3Ⅱ/Ⅰ, PINK1 and Parkin proteins in cartilage tissue were significantly decreased (P<0.01), while the percentage of chondrocytes with low Δψm, the average fluorescence intensity of ROS, and the expression of p62 protein in cartilage tissue were significantly increased (P<0.01). Compared to the model group, the acupotomy group showed no obvious defects on the surface of rabbit knee joint cartilage, relatively dense distribution of chondrocytes, increased autophagosomes, and relatively normal mitochondrial morphology. The fluorescence intensity of LC3B, PINK1 and Parkin, the expression of LC3Ⅱ/Ⅰ, PINK1 and Parkin proteins in cartilage tissue were significantly increased (P<0.01, P<0.05), while the percentage of chondrocytes with low Δψm, the average fluorescence intensity of ROS, and the expression of p62 protein in cartilage tissue were significantly decreased (P<0.01). CONCLUSION: Acupotomy may promote mitophagy by regulating the PINK1/Parkin pathway, thereby improving cartilage damage in rabbits with KOA.


Subject(s)
Acupuncture Therapy , Osteoarthritis, Knee , Rabbits , Animals , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/therapy , Mitophagy/genetics , Reactive Oxygen Species , Cartilage , Ubiquitin-Protein Ligases/genetics , Antibodies , Protein Kinases
10.
BMC Gastroenterol ; 23(1): 292, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653392

ABSTRACT

BACKGROUND: Several proteins in the tripartite-motif (TRIM) family are associated with the development of colorectal cancer (CRC), but research on the role of TRIM69 was lacking. The present study examined the correlation between TRIM69 expression and colon adenocarcinoma (COAD). METHODS: mRNA sequencing data for COAD patients was extracted from The Cancer Genome Atlas to analyze correlations between TRIM69 expression and patients' clinical features as well as survival. Potential associations with immune cells and chemosensitivity also were predicted using various algorithms in the TIMER, Limma, clusterProfiler, GeneMANIA, and Gene Set Cancer Analysis platforms. Subsequently, polymerase chain reaction analysis and immunohistochemical staining were used to detect TRIM69 expression in COAD tissue samples from real-world patients. RESULTS: TRIM69 expression was lower in COAD tissues than in normal tissues and correlated with the pathologic stage and metastasis (M category). Additionally, TRIM69 was found to be involved in several immune-related pathways, notably the NOD-like signaling pathway. These results suggest that high TRIM69 expression has the potential to enhance tumor sensitivity to 5-fluorouracil and programmed cell death protein 1 (PD-1) blockers. CONCLUSIONS: From our findings that TRIM69 expression was significantly reduced in COAD compared with non-cancer tissues and associated with pathologic stage and metastasis, we conclude that increasing TRIM69 expression and/or activity may help to improve therapeutic outcomes. Accordingly, TRIM69 represents a potentially valuable marker of metastasis and target for adjuvant therapy in COAD.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Fluorouracil/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Programmed Cell Death 1 Receptor , Algorithms , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
11.
Dev Growth Differ ; 65(7): 408-417, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37439148

ABSTRACT

Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin-proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216-/- mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216-/- mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand-receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.


Subject(s)
RNA-Binding Proteins , Ubiquitin , Animals , Mice , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus , RNA , RNA-Binding Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Humans
12.
J Tradit Chin Med ; 43(3): 484-493, 2023 06.
Article in English | MEDLINE | ID: mdl-37147749

ABSTRACT

OBJECTIVE: To explore the possible mechanism of Tongdu Tiaoshen acupuncture combined with Xiaoxuming decoction (, XXMD) in the treatment of Parkinson's disease (PD). METHODS: C57BL/6 mice were randomly divided into eight groups ( 12), including blank group, model group, medication group, acupuncture group, high-dose XXMD group (XXMD-H), low-dose XXMD group (XXMD-L), acupuncture combined with high-dose XXMD group (A+H), and acupuncture combined with low-dose XXMD group (A+L). After treatment for 6 weeks, dopamine (DA) neurons and the pathological changes of tyrosine hydroxylase (TH) positive cells were observed. The enzyme-linked immunosorbent assay (ELISA) was used to measure the content of DA and the level of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α). The mRNA level of PINK1 and Parkin and the protein expression of Nix, PINK1 and Parkin in the substantia nigra were also detected. RESULTS: Combination treatment effectively ameliorated the symptoms of PD. Compared with model group, combined treatment significantly up-regulated the protein expression of Nix, Parkin and PINK1 and the mRNA levels of PINK1 and Parkin in the substantia nigra (<0.0001, <0.001, <0.01 or <0.05). Furthermore, the levels of pro-inflammation cytokines were obviously decreased after combination therapy, while IL-10 content was increased remarkably (<0.01). CONCLUSION: Compared with each treatment alone, combination therapy improved the pathological damage of DA neurons of PD mice more effectively. The possible mechanism may be attributed to the up-regulated level of mitochondrial autophagy and improved mitochondrial function. These results provide fresh insight into the mechanism of co-treatment with Tongdu Tiaoshen acupuncture and XXMD for PD.


Subject(s)
Acupuncture Therapy , Parkinson Disease , Mice , Animals , Dopaminergic Neurons/pathology , Interleukin-10 , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/genetics , Protein Kinases
13.
JCI Insight ; 8(8)2023 04 24.
Article in English | MEDLINE | ID: mdl-37092553

ABSTRACT

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Subject(s)
Induced Pluripotent Stem Cells , Puberty, Precocious , Humans , Female , Mice , Animals , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Hypothalamus/metabolism , Puberty , Gonadotropin-Releasing Hormone/metabolism , Puberty, Precocious/genetics , Puberty, Precocious/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Int J Oncol ; 62(3)2023 Mar.
Article in English | MEDLINE | ID: mdl-36799168

ABSTRACT

Studies on clear cell renal cell carcinoma (ccRCC) are gaining momentum due to its high malignancy and potential to metastasize. F­box protein 30 (FBXO30) is a member of the F­box protein family; however, its role and mechanism in cancer remains to be fully elucidated. Western blotting, reverse transcription­quantitative PCR and immunohistochemsitry were performed to detect the expression levels of FBXO30 in ccRCC tissues and adjacent normal tissues. Tumor biological function assays and animal experiments were conducted to clarify the inhibitory effect of FBXO30 on the progression and metastasis of ccRCC. Protein half­life assay, MG132 inhibition assay, immunofluorescence assay and co­immunoprecipitation assay were performed to explore the ubiquitination mechanism of FBXO30 and HIF­1α. Zinc supplementation assay was used to verify the regulatory relationship between human ZRT, IRT­like protein 1 (hZIP1), FBXO30 and HIF­1α. The present study revealed that the expression levels of FBXO30 were lower in ccRCC tissues compared with those in normal adjacent tissues. In addition, FBXO30 inhibited the tumorigenesis and metastatic capacity of ccRCC cells in vivo and in vitro. FBXO30 mediated the ubiquitination and degradation of hypoxia­inducible factor­1α (HIF­1α) in ccRCC cells under normoxia, thereby inhibiting the oncogenic effect of HIF­1α. Notably, hZIP1 served as an upstream regulator of FBXO30, regulating the expression of FBXO30 and HIF­1α by recruiting Zn2+. In conclusion, the present data suggested that FBXO30 is a novel E3 ubiquitination ligase that can function as a tumor suppressor in ccRCC, and the hZIP1/Zn2+/FBXO30/HIF­1α axis may provide potential biomarkers or therapeutic targets for ccRCC.


Subject(s)
Carcinoma, Renal Cell , F-Box Proteins , Kidney Neoplasms , Animals , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , F-Box Proteins/genetics , F-Box Proteins/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 48(2): 534-541, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725243

ABSTRACT

This study investigated the mechanism of Danggui Shaoyao Powder(DSP) against mitophagy in rat model of Alzheimer's disease(AD) induced by streptozotocin(STZ) based on PTEN induced putative kinase 1(PINK1)-Parkin signaling pathway. The AD rat model was established by injecting STZ into the lateral ventricle, and the rats were divided into normal group, model group, DSP low-dose group(12 g·kg~(-1)·d~(-1)), DSP medium-dose group(24 g·kg~(-1)·d~(-1)), and DSP high-dose group(36 g·kg~(-1)·d~(-1)). Morris water maze test was used to detect the learning and memory function of the rats, and transmission electron microscopy and immunofluorescence were employed to detect mitophagy. The protein expression levels of PINK1, Parkin, LC3BⅠ/LC3BⅡ, and p62 were assayed by Western blot. Compared with the normal group, the model group showed a significant decrease in the learning and memory function(P<0.01), reduced protein expression of PINK1 and Parkin(P<0.05), increased protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05), and decreased occurrence of mitophagy(P<0.01). Compared with the model group, the DSP medium-and high-dose groups notably improved the learning and memory ability of AD rats, which mainly manifested as shortened escape latency, leng-thened time in target quadrants and elevated number of crossing the platform(P<0.05 or P<0.01), remarkably activated mitophagy(P<0.05), up-regulated the protein expression of PINK1 and Parkin, and down-regulated the protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05 or P<0.01). These results demonstrated that DSP might promote mitophagy mediated by PINK1-Parkin pathway to remove damaged mitochondria and improve mitochondrial function, thereby exerting a neuroprotective effect.


Subject(s)
Alzheimer Disease , Mitophagy , Rats , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Powders , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
16.
Mol Neurobiol ; 60(5): 2801-2818, 2023 May.
Article in English | MEDLINE | ID: mdl-36732429

ABSTRACT

Extracellular vesicle (EV)-encapsulated circRNAs have the potential role in affecting brain disorders. However, the role of circ_0000075 in cerebral ischemic injury remains unclear. Here, we tried to investigate the mechanism of bone marrow mesenchymal stem cell (BMSC)-derived EVs carrying circ_0000075 in the control of cerebral ischemic injury. Initially, a mouse model with cerebral ischemic injury was induced by middle cerebral artery occlusion (MCAO), followed by the determination of circ_0000075 expression. Then, neurons were isolated and subjected to oxygen-glucose deprivation/reperfusion. BMSCs were isolated for extraction of EVs. The correlation among circ_0000075, microRNA (miR)-218-5p, and Smad ubiquitination regulatory factor 2 (SMURF2) was detected with their roles in cerebral ischemic injury analyzed in vivo and in vitro. circ_0000075 was down-regulated in MCAO mice and engineered RVG-EVs were internalized by neurons to up-regulate circ_0000075 expression. Treatment of RVG-circ_0000075-EVs reduced brain tissue damage, increased neuronal count, and significantly curtailed apoptosis rate, suppressing cerebral ischemic injury in vitro and in vivo. miR-218-5p was targeted by circ_0000075 in neurons, which promoted SMURF2 expression. A negative correlation between SMURF2 and transcriptional regulator Yin Yang 1 (YY1) was identified. In vitro experiments further proved that circ_ 00,000 75 could down-regulate the expression of YY1 through SMURF2, and finally relieving cerebral ischemic injury. Collectively, engineered EVs delivered circ_0000075 into brain tissues and increased circ_0000075 expression, which down-regulated miR-218-5p and up-regulated SMURF2, thus alleviating cerebral ischemic injury.


Subject(s)
Brain Injuries , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Ubiquitin-Protein Ligases/genetics , MicroRNAs/genetics
17.
Gene Ther ; 30(1-2): 51-63, 2023 02.
Article in English | MEDLINE | ID: mdl-34545207

ABSTRACT

Genetic association between E3 ubiquitin ligase SMURF2 and colorectal cancer (CRC) has been identified, while the mechanism remains undefined. Tumor-promoting gene YY1 represents a downstream factor of SMURF2. The study was designed to evaluate the effect of SMURF2 on the malignant phenotypes of CRC cells and the underlying mechanism. The expression pattern of SMURF2 and YY1 in CRC clinical tissues and cells was characterized by immunohistochemistry (IHC) and Western blot. Gain- and loss-of-function experiments were conducted to assess the effect of SMURF2 and YY1 on the behaviors of CRC cells. After bioinformatics analysis, the relationship between YY1 and SENP1 as well as between SENP1 and c-myc was determined by luciferase reporter and ChIP assays. Rescue experiments were performed to show their involvement during CRC progression. Finally, in vivo models of tumor growth were established for validation. SMURF2 was lowly expressed and YY1 was highly expressed in CRC tissues and cells. YY1 overexpression resulted in promotion of CRC cell proliferation, migration, and invasion, which could be reversed by SMURF2. Furthermore, SMURF2 could induce ubiquitination-mediated degradation of YY1, which bound to the SENP1 promoter and upregulated SENP1 expression, leading to enhancement of c-myc expression. The in vivo data revealed the suppressive role of SMURF2 gain-of-function in tumor growth through downregulation of YY1, SENP1, or c-myc. Altogether, our data demonstrate the antitumor activity of SMURF2 in CRC and the anti-tumor mechanism associated with degradation of YY1 and downregulation of SENP1/c-myc.


Subject(s)
Colorectal Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Cell Proliferation/genetics , Down-Regulation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
18.
Appl Biochem Biotechnol ; 195(1): 639-654, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36121634

ABSTRACT

Parkinson's disease (PD) is considered to be a highly severe neurological disorder. PD occurs due to a decrease in dopamine production by the degeneration of dopamine-secreting neurons. Genetic mutations, environmental toxins and lifestyle are some of the risk factors of the progressive neurodegenerative disorder PD. Parkin protein, which is encoded by the PARK gene, is one of the important proteins, which is one of the causative agents. The Parkin protein has several mutations which lead to the development of the disease. Apart from PD, the mutations in Parkin also showed to be responsible for the onset of diseases like cancers. It is reported that the E28K mutation in the Ubl domain of parkin is highly deleterious and responsible for the onset of melanoma. This necessitates the development of new therapeutics against PD. Molecules like levodopa, carbidopa, monoamine oxidase type B inhibitors (MBO inhibitors), dopamine agonists, anticholinergics and amantadine are some commonly used drugs used to treat PD. Recently, there have been increasing evidence which shows that cigarette smoking and consumptions of coffee and tea could have important roles in modulating the risk of PD. Therefore, we planned to analyse the molecular mechanism of the binding interactions of nicotine, caffeine and the polyphenol ( -)-epigallocatechin-3-gallate (EGCG) from green tea with Parkin protein to predict their therapeutic potentials in PD targeting the E28K mutation. We focused on E28K mutant of Parkin as this mutant form of parkin has been shown to be the most pathogenic one. We could identify the potential therapeutic aspects of these natural products to prevent the onset of PD. This work may therefore be considered to be the first of its kind which would take into consideration the environmental toxicological approach in designing natural product inhibitors against the onset of PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Nicotine , Caffeine , Dopamine/therapeutic use , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mutation
19.
Nutrients ; 14(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235632

ABSTRACT

Sarcopenia is the decline in skeletal muscle mass, strength, and functions, which decreases the quality of life in elderly people. This study investigated the suppressive effect of turmeric (Curcuma longa) extract (TE) on muscle atrophy in dexamethasone (DEX)-treated mice and C2C12 myotubes. DEX treatment significantly decreased the muscle weight and significantly increased Fbxo32 and Murf1 expression in mice, and these changes were suppressed by the supplementation of an AIN-93 based diet with 2% TE. A similar pattern was observed in FBXO32 and MuRF1 protein expression. In C2C12 myotubes, DEX treatment significantly increased FBXO32 and MuRF1 gene and protein expression, and these increases were significantly suppressed by TE supplementation at a concentration of 200 µg/mL. Furthermore, one of the five TE fractions, which were separated by high-performance liquid chromatography had a similar effect with TE supplementation. The present study proposes the suppressive effect of turmeric on sarcopenia.


Subject(s)
Curcuma , Sarcopenia , Animals , Dexamethasone/pharmacology , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Quality of Life , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/prevention & control , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
J Biochem Mol Toxicol ; 36(11): e23182, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35938691

ABSTRACT

Aberrant expression of microRNA-497 (miR-497) is associated with tumor progression, but the molecular mechanisms in tumorigenesis remain largely unknown. Here, we report that miR-497 expression is downregulated in esophageal squamous cell carcinoma (ESCC) clinical samples. Consistently, upregulation of miR-497 inhibits ESCC cell malignant properties and tumor growth in vivo. Importantly, we uncovered that miR-497 upregulation suppressed ESCC cell growth and tumor growth by inhibiting Smurf2. Mechanistically, we showed that Smurf2 was a target of miR-497, and mediated YY1 expression to elevate HIF2α expression, thereby enhancing the malignancy of ESCC cells. Together, our study uncovered the role of the miR-497-mediated Smurf2/YY1/HIF2α axis in tumor growth and metastasis, which might provide potential therapeutic targets for human ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , MicroRNAs/genetics , Cell Line, Tumor , Up-Regulation , Cell Proliferation , Gene Expression Regulation, Neoplastic , Cell Movement , Neoplasm Invasiveness/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL